Browse Source

(*) emqx问题排查20210531

merge-requests/1/head
yinweiwen 3 years ago
parent
commit
4c30fe2645
  1. 291
      devops/mqtt/MQTT数据接收进程问题排查(之二).md
  2. 105
      devops/mqtt/通过共享订阅实现MQTT接收横向扩展.md

291
devops/mqtt/MQTT数据接收进程问题排查(之二).md

@ -0,0 +1,291 @@
# MQTT数据接收进程问题排查(之二)
## 问题又来了
昨天通过EMQX的**共享订阅**,实现了recv进程的横向扩展,加之之前博客看到的问题是处理效率导致,兴高采烈的升级了程序。
运行不到一天,观察发现,3个实例中有2个出现了重启现象。之前的问题并没有能够解决。
通过KUBESPHERE监控查看:
![image-20210525091201891](imgs/MQTT数据接收进程问题排查(之二)/image-20210525091201891.png)
程序出现问题重启之前,从流量监控看,流入有大包(10min窗口内达6.15M)。同时流出的流量大概是100x的流入。之后一段时间内存成线性增长(后续消息堆积)直至程序崩溃。
结合之前日志中观察,很可能是因为出现大包(**Large message**),kafka发送异常、重试,导致资源耗尽。
## 先做保护
在Mqtt client消息回调函数中,过滤掉Kafka不能消化的大包
```java
public void messageArrived(String topic, MqttMessage mqttMessage) throws Exception {
...
byte[] bts = mqttMessage.getPayload();
if (bts.length > maxBytes) {
logger.info("large message. " + bts.length + ". Time:" + time + " Topic:" + topic + "-" + topic);
return;
}
...
}
```
## 为什么流出=100x流入?
1. 已知的 2x3 倍
receive进程中设置了重试次数**3**, 如下:
`dac.mqtt.recv.PahoMqttApp.java`
```java
props.put("bootstrap.servers", this.props.getProperty("kafka.brokers"));
props.put("acks", this.props.getProperty("kafka.producer.acks", "1")); // 主分片应答
props.put("retries", this.props.getProperty("kafka.producer.retries", "3")); // 重试次数3
props.put("batch.size", this.props.getProperty("kafka.producer.batch.size", "1638400")); // 分批大小
props.put("linger.ms", this.props.getProperty("kafka.producer.linger.ms", "5")); // 发送检查 5ms
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("max.request.size", 12695150); // 最大请求包
```
另外,发送的消息中ProducerRecord设置了Key属性(使用message整体作为Key,所以体积约为原先**2**倍)
```java
ProducerRecord<String, String> record = new ProducerRecord<String, String>(kf, message, message);
```
2. 剩下的16倍。
**猜测**:`anxinyun_data` topic下有4个分片,分布在4个broker上, kafka重试的时候是否会对各个broker上的分片进行轮询尝试?
查看源码中的处理。
### 消息发布语义 (Message Delivery Semantics)
- *At most once*—Messages may be lost but are never redelivered.
- *At least once*—Messages are never lost but may be redelivered.
- *Exactly once*—this is what people actually want, each message is delivered once and only once.
producer的ack参数
- 0 producer将消息发送到broker,不等待响应。
- 1 发送后等待broker的响应,如果没有确认接收消息,producer将基于retry配置进行重试(retries 重试次数,默认0)。在此模式下,确认消息是由broker的主分片(Leader partition)发出,副本在拷贝过程中仍然可能出现数据丢失
- ALL Broker在最小副本数同步完成后才会发出确认消息(The broker sends acknowledgment only after replication based on the `min.insync.replica` property. )
### 大消息处理
参考 [[调节kafka消费信息的大小]](https://www.cnblogs.com/xingfengzuolang/p/10762464.html)
10k左右大小吞吐量性能最佳,当消息体过大时建议
- 文件存储,消息内发文件链接
- 消息切片,消费端组合
- 生产端 `compression.codec` 和`commpressed.topics`可以开启压缩功能,压缩算法可以使用GZip或Snappy。
broker配置:
- **message.max.bytes** (默认:1000000; ~1M) – broker能接收消息的最大字节数,这个值应该比消费端的fetch.message.max.bytes更小才对,否则broker就会因为消费端无法使用这个消息而挂起。
- **log.segment.bytes** (默认: 1GB) – kafka数据文件的大小,确保这个数值大于一个消息的长度。一般说来使用默认值即可(一般一个消息很难大于1G,因为这是一个消息系统,而不是文件系统)。
- **replica.fetch.max.bytes** (默认: 1MB) – broker可复制的消息的最大字节数。这个值应该比message.max.bytes大,否则broker会接收此消息,但无法将此消息复制出去,从而造成数据丢失。
Consumer配置:
- **fetch.message.max.bytes** (默认 1MB) – 消费者能读取的最大消息。这个值应该大于或等于message.max.bytes。
Producer配置:
- **max.request.size**:该参数是指定发送消息的最大尺寸,默认是1M,单位是字节。
- **buffer.memory**:该参数是指定缓冲区的打小,默认是32M,单位是字节
### Producer源码
代码中部分概念:
```json
Node -- Kafka Node
```
发送部分源码摘要:<并未找到重试时对所有node的尝试代码 TODO>
```java
// producer.internals.Sender
public class Sender{
/**
* The main run loop for the sender thread
*/
public void run() {
log.debug("Starting Kafka producer I/O thread.");
// main loop, runs until close is called
while (running) {
try {
long pollTimeout = sendProducerData(now);
client.poll(pollTimeout, now);
} catch (Exception e) {
log.error("Uncaught error in kafka producer I/O thread: ", e);
}
}
...
}
private long sendProducerData(long now) {
// 获取准备发送数据的分区信息
RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);
...准备更新partitions without leaders
...删除未准备的节点
// create produce requests
Map<Integer, List<ProducerBatch>> batches = this.accumulator.drain(cluster, result.readyNodes,
this.maxRequestSize, now);
...
sendProduceRequests(batches, now); // client.send(clientRequest, now);
return pollTimeout;
}
}
...
}
// 队列缓存消息记录
class RecordAccumulator{
...
// 加入队列
public RecordAppendResult append(TopicPartition tp,...){}
/**
* Get a list of nodes whose partitions are ready to be sent, and the earliest time at which any non-sendable
* partition will be ready; Also return the flag for whether there are any unknown leaders for the accumulated
* partition batches.
*/
public ReadyCheckResult ready(Cluster cluster, long nowMs) {
}
// Drain all the data for the given nodes and collate them into a list of batches
public Map<Integer, List<ProducerBatch>> drain(...){}
}
class KafkaProducer{
private Future<RecordMetadata> doSend(ProducerRecord<K, V> record, Callback callback) {
... RecordAccumulator.append(...) // 队列满了 this.sender.wakeup();激活client
}
}
// 底层的发送 网络客户端
class NetworkClient(){
...
private void doSend(ClientRequest clientRequest, boolean isInternalRequest, long now, AbstractRequest request) {
...
RequestHeader header = clientRequest.makeHeader(request.version());
...
Send send = request.toSend(nodeId, header); // make send (NetworkSend extends ByteBufferSend)
InFlightRequest inFlightRequest = new InFlightRequest(...);
this.inFlightRequests.add(inFlightRequest); // add to inflight
selector.send(inFlightRequest.send);
}
...
}
// A nioSelector interface for doing non-blocking multi-connection network I/O.
public class Selector{
public void send(Send send) {
channel.setSend(send);
}
public void poll(long timeout){
...
//poll from channels where the underlying socket has more data
pollSelectionKeys(readyKeys, false, endSelect);
}
// handle any ready I/O on a set of selection keys
void pollSelectionKeys(Set<SelectionKey> selectionKeys,
boolean isImmediatelyConnected,
long currentTimeNanos) {
/* if channel is ready write to any sockets that have space in their buffer and for which we have data */
if (channel.ready() && key.isWritable()) {
Send send = channel.write();
if (send != null) {...}
}
}
}
public class KafkaChannel{
public void setSend(Send send) {
this.send = send; // Send : 处理中的数据发送接口模型。 包含:地址信息、完成、写、大小
this.transportLayer.addInterestOps(SelectionKey.OP_WRITE);
}
public Send write() throws IOException {
if (send != null && send(send)) { ... }
}
private boolean send(Send send) throws IOException {
send.writeTo(transportLayer);
return send.completed();
}
}
```
## 后续问题持续跟踪
### 升级问题 0525
在使用共享订阅的时候,**升级**recv导致原订阅者出现DISCONNECTED状态,出现数据丢失。如下图:
![image-20210525173902767](imgs/MQTT数据接收进程问题排查(之二)/image-20210525173902767.png)
这是因为代码里默认指定了Clean Session为false,即保留会话。这样在client id下线后,共享订阅的会话依然保留,数据就分流丢失了。
**解决方法:** 设置 Clean Session=true
另外,因为我们指定了clientid为容器实例名称,进程异常重启时容器ID不变,mqtt客户端id也不会变化,重连后恢复保留会话,故数据没有丢失。
### EMQX代理问题 0531
emqx进程内存持续增长导致重启。
![image-20210531135639456](imgs/MQTT数据接收进程问题排查(之二)/image-20210531135639456.png)
#### 查看EMQX代理飞窗和消息队列
https://docs.emqx.cn/broker/v4.3/advanced/inflight-window-and-message-queue.html#%E7%AE%80%E4%BB%8B
emq将多个未确认的报文存放在飞行窗口(Inflight Window)中直至确认。
当报文超出限制(max_inflight)后续报文不再发送,存储在MessageQueue。
当客户端离线时,Message Queue 还会被用来存储 QoS 0 消息,这些消息将在客户端下次上线时被发送。这功能默认开启,当然你也可以手动关闭,见 `mqueue_store_qos0`
需要注意的是,如果 Message Queue 也到达了长度限制,后续的报文将依然缓存到 Message Queue,但相应的 Message Queue 中最先缓存的消息将被丢弃。如果队列中存在 QoS 0 消息,那么将优先丢弃 QoS 0 消息。因此,根据你的实际情况配置一个合适的 Message Queue 长度限制(见 `max_mqueue_len`)是非常重要的。
| 配置项 | 类型 | 可取值 | 默认值 | 说明 |
| ----------------- | ------- | --------------- | ------------------------------------- | ------------------------------------------------------ |
| max_inflight | integer | >= 0 | 32 *(external)*, 128 *(internal)* | Inflight Window 长度限制,0 即无限制 |
| max_mqueue_len | integer | >= 0 | 1000 *(external)*, 10000 *(internal)* | Message Queue 长度限制,0 即无限制 |
| mqueue_store_qos0 | enum | `true`, `false` | true | 客户端离线时 EMQ X 是否存储 QoS 0 消息至 Message Queue |
生产环境EMQ X配置如下:
![image-20210531145227342](imgs/MQTT数据接收进程问题排查(之二)/image-20210531145227342.png)
```shell
## Maximum queue length. Enqueued messages when persistent client disconnected,
## or inflight window is full. 0 means no limit.
##
## Value: Number >= 0
zone.external.max_mqueue_len = 0
# 改成10000
```

105
devops/mqtt/通过共享订阅实现MQTT接收横向扩展.md

@ -0,0 +1,105 @@
# 通过共享订阅实现MQTT接收横向扩展
> 引言: 安心云的Receiver进程(MQTT->Kafka消息管道),运行一段时间后出现异常退出。虽做了重连/重启保护机制,但是还是会造成一部分数据丢失。
## 问题排查
MQTT重连后,订阅消息时报错 (另外收到一条信息)
```shell
SEVERE: receiver.production20429120721: Timed out as no activity, keepAlive=60,000,000,000 lastOutboundActivity=8,545,217,349,987,626 lastInboundActivity=8,545,157,349,155,183 time=8,545,277,349,973,460 lastPing=8,545,217,349,991,742
```
这里有类似问题的描述,作者通过抓包发现Java程序给emqx服务发送TCP ZeroWindow,告诉服务自己的接收buff已满,不要再发送数据。同理心跳包也不能发送了,emqx服务收不到心跳包,认为客户端已不存活,会主动断连。
https://blog.csdn.net/u012134942/article/details/103965155
显然是因为emqx服务发送数据快,程序处理数据慢。审查代码才发现业务数据已经多线程处理,但emqx客户端的上下线消息并没有多线程处理,处理速度慢,导致tcp连接接收buffer被占满。
结论:
**数据处理效率不足,接收缓冲满导致。**
## [EMQX共享订阅](https://docs.emqx.cn/broker/v4.3/advanced/shared-subscriptions.html#%E5%B8%A6%E7%BE%A4%E7%BB%84%E7%9A%84%E5%85%B1%E4%BA%AB%E8%AE%A2%E9%98%85)
共享订阅是在多个订阅者之间实现负载均衡的订阅方式:
### 带群组的共享订阅
```bash
[subscriber1] got msg1
msg1, msg2, msg3 /
[publisher] ----------------> "$share/g/topic" -- [subscriber2] got msg2
\
[subscriber3] got msg3
```
上图中,共享 3 个 subscriber 用共享订阅的方式订阅了同一个主题 `$share/g/topic`,其中`topic` 是它们订阅的真实主题名,而 `$share/g/` 是共享订阅前缀。g是group名称,类似kafka的group.id。
### 不带群组的共享订阅
`$queue/` 为前缀的共享订阅是不带群组的共享订阅。它是 `$share` 订阅的一种特例,相当与所有订阅者都在一个订阅组里面:
```bash
[s1] got msg1
msg1,msg2,msg3 /
[emqx] ---------------> "$queue/topic" - [s2] got msg2
\
[s3] got msg3
```
### 均衡策略与派发 Ack 配置
EMQ X 的共享订阅支持均衡策略与派发 Ack 配置:
```bash
# etc/emqx.conf
# 均衡策略
broker.shared_subscription_strategy = random
# 适用于 QoS1 QoS2 消息,启用时在其中一个组离线时,将派发给另一个组
broker.shared_dispatch_ack_enabled = false
```
| 均衡策略 | 描述 |
| :---------- | :--------------------------- |
| random | 在所有订阅者中随机选择 |
| round_robin | 按照订阅顺序 |
| sticky | 一直发往上次选取的订阅者 |
| hash | 按照发布者 ClientID 的哈希值 |
## 应用修改
### 修改订阅的topic
直接修改配置文件中的topic
```properties
# 修改前
topics=${topic.perfix}_data
# 修改后
topics=$queue/${topic.perfix}_data
```
### 修改client.id
多实例运行,需保证各MQTT客户端实例的ID不一样。
```java
String clientId = System.getenv("HOSTNAME"); // 直接取k8s的容器实例的名称作为MQTT Client.Id
if (clientId == null) {
clientId = this.props.getProperty("client.id") + UUID.randomUUID();
}
logger.info("mqtt client id:" + clientId);
```
### k8s部署
直接增加副本数。后面可以通过KUBESPHERE的弹性伸缩配置,按需增减实例数。
![image-20210524161628975](imgs/通过共享订阅实现MQTT接收横向扩展/image-20210524161628975.png)
Loading…
Cancel
Save