literaryloong
4 years ago
2 changed files with 297 additions and 0 deletions
@ -0,0 +1,295 @@ |
|||
## scala |
|||
|
|||
在项目pom.xml中引入: |
|||
|
|||
```xml |
|||
<!-- https://mvnrepository.com/artifact/org.mongodb.scala/mongo-scala-driver --> |
|||
<dependency> |
|||
<groupId>org.mongodb.scala</groupId> |
|||
<artifactId>mongo-scala-driver_${scala.version}</artifactId> |
|||
<version>4.2.3</version> |
|||
</dependency> |
|||
``` |
|||
|
|||
TIPs |
|||
|
|||
> 1. Document有两种:immutable和mutable;immutable document插入时如果不指定_id,系统会自动分配,且不会返回给用户。 |
|||
> |
|||
> 2. 所有的方法会的是 `Observables`对象,这是一种 “cold” streams ,并不会立即执行,直至它被subscribed。 |
|||
|
|||
构建Document: |
|||
|
|||
> `scala`数据类型转`Bson`数据类型 |
|||
|
|||
```scala |
|||
|
|||
object BsonValueConvert { |
|||
|
|||
// scala -> Document |
|||
def mapToDocument(obj: Map[String, Any]): Document = Document(mapToBsonDocument(obj)) |
|||
|
|||
// scala -> BsonDocument |
|||
def mapToBsonDocument(obj: Map[String, Any]): BsonDocument = BsonDocument(obj.map(writePair)) |
|||
|
|||
|
|||
// java -> Document |
|||
def mapToDocument(obj: java.util.Map[String, Object]): Document = Document(mapToBsonDocument(obj)) |
|||
|
|||
// java -> BsonDocument |
|||
def mapToBsonDocument(obj: java.util.Map[String, Object]): BsonDocument = BsonDocument(obj.map(writePair)) |
|||
|
|||
// Document -> scala Map |
|||
def documentToMap(b: Document): Map[String, Any] = b.map(writeMapPair).toMap |
|||
|
|||
// BsonDocument -> scala Map |
|||
def bsonDocumentToMap(b: BsonDocument): Map[String, Any] = b.toMap.map(writeMapPair) |
|||
|
|||
/** |
|||
* 数据格式转换 |
|||
* |
|||
* @param p scala/java Map |
|||
* @return String->BsonValue pair |
|||
*/ |
|||
def writePair(p: (String, Any)): (String, BsonValue) = (p._1, p._2 match { |
|||
case value: String => BsonString(value) |
|||
case value: Double => BsonDouble(value) |
|||
case value: Int => BsonInt32(value) |
|||
case value: Boolean => BsonBoolean(value) |
|||
case value: Long => BsonInt64(value) |
|||
case value: Date => BsonDateTime(value.getTime) |
|||
case value: DateTime => BsonDateTime(value.getMillis) |
|||
case value: Map[String, Any] => mapToBsonDocument(value) |
|||
case value: java.util.Map[String, Object] => mapToBsonDocument(value) |
|||
case _ => BsonNull() |
|||
}) |
|||
|
|||
def writeMapPair(p: (String, BsonValue)): (String, Any) = (p._1, p._2 match { |
|||
case v: BsonString => v.getValue |
|||
case v: BsonDouble => v.getValue |
|||
case v: BsonInt32 => v.getValue |
|||
case v: BsonBoolean => v.getValue |
|||
case v: BsonInt64 => v.getValue |
|||
case v: BsonDateTime => new DateTime(v.getValue) |
|||
case v: BsonNull => null |
|||
case v: BsonDocument => bsonDocumentToMap(v) |
|||
case v => v |
|||
}) |
|||
} |
|||
``` |
|||
|
|||
CRUD操作: |
|||
|
|||
```scala |
|||
// 类似ES index操作。如果id相同则覆盖数据。使用bulkWrite写入 |
|||
val opt = new ReplaceOptions().upsert(true) |
|||
val acts = mapDocs.map(d => { |
|||
val doc = BsonValueConvert.mapToDocument(d.getSource) |
|||
if (!autoGenerated && d.getId.nonEmpty) { |
|||
doc.append("_id", BsonString(d.getId)) |
|||
ReplaceOneModel(equal("_id", d.getId), doc, opt) |
|||
} else { |
|||
InsertOneModel(doc) |
|||
} |
|||
}) |
|||
val f = collection(indexName).bulkWrite(acts).toFutureOption() |
|||
|
|||
// 读取数据 |
|||
import org.mongodb.scala.model._ |
|||
val f = collection(indexName).find(and( |
|||
in("sensor", stationId: _*), |
|||
gte("collect_time", BsonDateTime(startDateTime.getMillis)), |
|||
lt("collect_time", BsonDateTime(endDateTime.getMillis)))) |
|||
.toFuture() |
|||
val r = Await.result(f, Duration.create(mQueryTimeoutMillis, TimeUnit.MILLISECONDS)) |
|||
if (r == null || r.isEmpty) { |
|||
info(s"query $indexName at [${stationId.mkString(",")}] from $startDateTime to $endDateTime timeout $mQueryTimeoutMillis ms") |
|||
List() |
|||
} else { |
|||
r.map(BsonValueConvert.documentToMap) |
|||
.map(map2ThemeData) |
|||
.filter(_ != null) |
|||
.toList |
|||
} |
|||
``` |
|||
|
|||
## Node.js |
|||
|
|||
```shell |
|||
npm install mongodb |
|||
``` |
|||
|
|||
CRUD |
|||
|
|||
```js |
|||
// 创建连接 |
|||
this.client = new MongoClient("mongodb://localhost:27017", { |
|||
useNewUrlParser: true, |
|||
useUnifiedTopology: true, |
|||
}); |
|||
this.client.connect() |
|||
.then(() => { |
|||
this.db = this.client.db("db") |
|||
}) |
|||
|
|||
// insert many |
|||
this.db.collection(elem._index).insertMany(arr) |
|||
|
|||
``` |
|||
|
|||
Query: |
|||
|
|||
```js |
|||
const { MongoClient } = require("mongodb"); |
|||
|
|||
class mongoQuery { |
|||
async get(sensor, start, end) { |
|||
this.client = new MongoClient("mongodb://localhost:27017", { |
|||
useNewUrlParser: true, |
|||
useUnifiedTopology: true, |
|||
}); |
|||
await this.client.connect() |
|||
this.db = this.client.db("test2") |
|||
this.collection = this.db.collection("anxinyun_themes") |
|||
|
|||
const query = { |
|||
$and: [ |
|||
{ sensor: { $in: [4054] } }, |
|||
{ collect_time: { $gte: "2020-06-01" } }, |
|||
{ collect_time: { $lt: "2021-06-08" } } |
|||
] |
|||
} |
|||
|
|||
const query2 = { |
|||
sensor: 4054, |
|||
collect_time: { |
|||
$gte: new Date(new Date().setHours(0, 0, 0)), |
|||
$lt: new Date(new Date().setHours(23, 59, 59)), |
|||
} |
|||
} |
|||
|
|||
const options = { |
|||
// sort by collect_time desc |
|||
sort: { collect_time: -1 }, |
|||
// Include only the `sensor` `data` and `collect_time` fields in each returned document |
|||
projection: { _id: 0, sensor: 1, data: 1, collect_time: 1 }, |
|||
} |
|||
|
|||
console.log(query2); |
|||
const cursor = this.collection.find(query2, options); |
|||
// print a message if no documents were found |
|||
if ((await cursor.count()) === 0) { |
|||
console.log("No theme datas found!"); |
|||
return []; |
|||
} |
|||
// replace console.dir with your callback to access individual elements |
|||
return await cursor.toArray() |
|||
} |
|||
} |
|||
|
|||
module.exports = { |
|||
mongoQuery |
|||
} |
|||
``` |
|||
|
|||
|
|||
|
|||
## 数据迁移 |
|||
|
|||
改写[elasticsearch-dump](https://github.com/yinweiwen/elasticsearch-dump)项目,使支持es > mongo的数据导出。 |
|||
|
|||
```shell |
|||
C:\Program Files\nodejs\node.exe .\bin\elasticdump --input=http://10.8.30.155:9200/anxinyun_themes --output=mongodb://localhost:27017 --limit=1000 --type=data |
|||
``` |
|||
|
|||
|
|||
|
|||
注意: |
|||
|
|||
1. ```shell |
|||
(node:25064) UnhandledPromiseRejectionWarning: Error: key PM2.5 must not contain '.' |
|||
at serializeInto (e:\Github\elasticsearch-dump\node_modules\bson\lib\bson\parser\serializer.js:921:19) |
|||
... |
|||
``` |
|||
``` |
|||
如果字段中包含'.' , mongodb的 js库会操作失败,返回如上内容 |
|||
|
|||
|
|||
2. 默认source中时间字段被解析成字符串,所以需要在转入mongo之前进行转换 |
|||
|
|||
```js |
|||
if(elem._source.collect_time){ |
|||
targetElem.collect_time=new Date(elem._source.collect_time) |
|||
} |
|||
if(elem._source.create_time){ |
|||
targetElem.create_time=new Date(elem._source.create_time) |
|||
} |
|||
``` |
|||
|
|||
|
|||
|
|||
## 性能对比 |
|||
|
|||
截止2021-6,两个数据库引擎在db-engine上的排名如下。其中mongo在nosql中排行第一,而ElasticSearch以其全文索引快速搜索的优势,也有不俗的表现。 |
|||
|
|||
![image-20210604170624551](imgs/ES转MongoDB实战/image-20210604170624551.png) |
|||
|
|||
我们使用修改后的elasticsearch-dump,将测试环境的 anxinyun_themes 索引下的数据全部导入本机mongodb test数据库 anxinyun_themes 集合中。总计~**1.2M** 条记录。 |
|||
|
|||
| 项目 | ES | Mongo | |
|||
| -------------------------------- | :------------------------------ | ---------------------------------- | |
|||
| 存储空间 | **242.3mb (488.8mb包含副本)** | 463.4MB (包含索引) | |
|||
| 查询效率(测点HD 6-1~6-8号数据) | 386ms | **111ms** (索引后) ~1s (索引前) | |
|||
| 插入效率(批次100) | 83.5ms | **28.6 ms** | |
|||
| 插入效率(批次500) | 137.6 ms | **89.2 ms** | |
|||
| 插入效率(批次1000) | 223.8 ms | **82.0 ms** | |
|||
|
|||
测试文件地址 |
|||
> FS-Anxinyun\trunk\codes\services\et\comm_utils\src\test\scala\MongoBenchmark.scala |
|||
> |
|||
> FS-Anxinyun\trunk\codes\services\et\comm_utils\src\test\scala\ElasticBenchmark.scala |
|||
|
|||
## 总结 |
|||
|
|||
es和mongodb都是已json为数据格式的nosql,都支持CRUD/聚合和全文索引/分片和副本/海量数据。 |
|||
|
|||
| | ElasticSearch | MongoDB | |
|||
| --------------------------- | ------------------------ | ----------------------------------------------------- | |
|||
| | **天生分布式,开箱即用** | “Shard+ConfigServer+QueryRouters”实现分布式,配置复杂 | |
|||
| | **全文检索强大灵活** | 全文检索支持一般 | |
|||
| | 全字段自动索引(倒排) | 需手动添加索引(B+树) | |
|||
| | java实现,RESTful接口 | C++ | |
|||
| 在我们的业务场景中 | | | |
|||
| 查询效率 (测点ID和时间范围) | | **更优** | |
|||
| 插入效率 (upsert) | | **更优** | |
|||
|
|||
本文主要是探索一种替换目前数据存储方案的可能性,因为在使用过程中我们发现了针对目前存储的数据结构,ES存在的一些弊端: |
|||
|
|||
1. 集群扰动。节点或分片未知故障(虽然设置了副本分片,但是仍然有可能出现服务整体宕机的情况) |
|||
2. 故障恢复困难。(有时需要几天的时间恢复集群) |
|||
3. 数据的字段数一直在增长,数据体积不断叠加增长 |
|||
4. 数据字段格式固定(根据第一次入库时动态创建) |
|||
|
|||
综上,ES在部署上更简单,支持任意组合的查询,但成本较高(高内存消耗)。而mongodb在我们这种只对某个字段进行索引查询,无全文索引需求的场景更加适用,并且高并发写性能更优,但是其部署和后期扩展都是比较复杂的。 |
|||
|
|||
|
|||
|
|||
参考: |
|||
|
|||
> [从MongoDB迁移到ES后,我们减少了80%的服务器](https://baijiahao.baidu.com/s?id=1663861054509638147&wfr=spider&for=pc) |
|||
> |
|||
> [回怼篇:我 10 亿级 ES 数据迁到 MongoDB 节省 90% 成本!](https://www.infoq.cn/article/ypf6m08G0AbkZL6ePY6A) |
|||
|
|||
**todo** |
|||
|
|||
1. flink mongo-sink实现: |
|||
|
|||
[StreamFileSink](https://github.com/apache/flink/blob/master/flink-streaming-java/src/main/java/org/apache/flink/streaming/api/functions/sink/filesystem/StreamingFileSink.java) |
|||
|
|||
[简单实现Sink到MongoDB](https://zhuanlan.zhihu.com/p/86458138) |
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Loading…
Reference in new issue